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3. p-values and con�dence
- the p-value is currently a basic tool of inference and yet serious
reservations have been raised to the extent that one journal banned its use
as a "measure of evidence" due to the replicability crisis

- the current approach taken by the statistical profession is to suggest that
there is nothing wrong with p-values rather it is the users who do not
understand how to use them correctly

- so what is a p-value?

De�nition Suppose there is a hypothesis H0 � Θ concerning the true
value of θ for the model ffθ : θ 2 Θg and a statistic T whose probability
distribution PH0 is known and �xed for each θ 2 H0 and such that extreme
values correspond to large values of T . Then H0 is assessed by computing
the p-value PH0(T � T (x)) for observed value T (x).
- if PH0(T � T (x)) is small, then it is concluded that there is evidence
against H0

Michael Evans University of Toronto http://www.utstat.utoronto.ca/mikevans/sta4522/STA4522.html ()The Measurement of Statistical Evidence Lecture 4 - part 1 2021 2 / 16



Question 1: How small is small enough?
- a rejection trial adds the ingredient of a value α 2 [0, 1] s.t. if
PH0(T � T (x)) � α, then evidence against is concluded
- historically α = 0.05 has been used but a recent recommendation has
been that this be replaced by α = 0.005
- will this work?
Example Corn�eld (1966)

- x = (x1, . . . , xn)
i .i .d .� N(µ, σ20) with µ 2 R1, σ20 known and H0 = fµ0g

- then with Tn(x) =
p
njx̄ � µ0j/σ0 � jZ j where Z � N(0, 1) the

p-value is the Z -test

PH0(Tn � Tn(x)) = P(jZ j �
p
njx̄�µ0j/σ0) = 2(1�Φ(

p
njx̄�µ0j/σ0))

which � 0.05 when
p
njx̄ � µ0j/σ0 � z0.975

- suppose an investigator collects n data values, performs the Z -test and
gets a p-value of 0.06
- this is close to the 0.05 level so they decide to collect m additional data
values and compute a new Z -test based on the n+m values obtaining
p-value < 0.05 and the result is submitted for publication
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- but this is a two-stage test and, when H0 is true, the probability of
evidence against µ0 is

PH0(Tn � z0.975) + PH0(Tm+n � z0.975 jTn < z0.975)PH0(Tn < z0.975)
= 0.05+ PH0(Tm+n � z0.975 jTn < z0.975)(0.95) > 0.05

and so evidence against H0 can never be found at the 0.05 level
- the problem here is the use of the 5% level to determine evidence against
and this problem persists no matter what α level is used, yet collecting
additional data in such circumstances seems like a very natural thing to do
Question 2: Why isn�t a large p-value (� α) evidence in favor?
- suppose the probability measure PH0 for T is continuous with cdf FH0
- then PH0(T � T (x)) = 1� FH0(T (x)) so when H0 is true the
probability distribution of the p-value is when θ 2 H0

Pθ(1� FH0(T (X )) � u) = PH0(FH0(T ) � 1� u) = u
since FH0(T ) � U(0, 1) when H0 is true
- so when H0 is true all possible values of the p-value are equally likely,
independent of the amount of data while, when when H0 is false, the
p-value typically converges to 0 as the amount of data increases
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Question 3: Do p-values measure scienti�c signi�cance or just statistical
signi�cance?

- suppose in the Z-test µtrue = µ0 + δ and δ is very small, then for n large
enough PH0(Tn � Tn(x)) < α even when the di¤erence δ is scienti�cally
irrelevant

- so p-values measure statistical signi�cance not scienti�c signi�cance

Boring, E. (1919) Mathematical vs statistical signi�cance.
Psychological Bulletin, 16, 10, 335-338.

- the common recommendation to deal with this issue is to compute a
con�dence interval for the parameter of interest but this doesn�t really help
unless you know the di¤erence that matters δ and even then it is
ambiguous as some values in the CI may be relevant and some not

- the real solution is to incorporate δ into the measure of evidence, for
example, put H0 = [µ0 � δ, µ0 + δ] and assess the evidence in favor or
against, but this isn�t done with p-values

- basic to resolving all these issues is to use a valid measure of evidence
which the p-value isn�t
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De�nition A map C : X ! 2Ψ is a γ-con�dence region for ψ = Ψ(θ) if
Pθ(Ψ(θ) 2 C (X )) � γ for every θ 2 Θ.
- when x is observed then record C (x) as "typically" the estimate is in
C (x) and so the "size" of C (x) serves as a measure of the accuracy of the
estimate

Example Absurd con�dence intervals
- the model X = R1, fθ(x) = (1� θ)f (x) + θf (x � 1) where f is the
N(0, 1) density function and Θ = [0, 1]

- Plante(1991) a 0.95-con�dence interval for θ that is uniformly most
accurate and unbiased is given by

C (x) =
�
[0, 1] �1.68148 � x � 2.68148

φ otherwise

Example Fieller (1954) Some problems in interval estimation. JRSSB, 16,
2, 175�185.

- x = (x1, . . . , xm)
i .i .d .� N(µ, σ20) ind. of y = (y1, . . . , yn)

i .i .d .� N(ν, σ20)
and ψ = Ψ(µ, ν) = µ/ν various frequentist approaches produce absurd
con�dence intervals (sometimes equal to R1)
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4. Bayesian Inference
- the prior π (a proper probability distribution on Θ) is added to the
ingredients, model ffθ : θ 2 Θg and data x
- gives a joint prior probability distribution (θ, x) � π(θ)fθ(x)
- recall the prior π expresses our beliefs about the true value of θ

- after observing x the principle of conditional probability implies we
replace π by the posterior

π(θ j x) = π(θ)fθ(x)
m(x)

where m(x) =
R

Θ π(θ)fθ(x) dθ is the prior predictive distribution of x
- how to choose a prior? elicitation
Example location normal

- x = (x1, . . . , xn)
i .i .d .� N(µ, σ20) with µ 2 R1, σ20 known and π a

N(µ0, τ
2
0) dist. so

π(µ j x) ∝ π(µ)fµ(x) ∝ exp
�
� (µ� µ0)

2

2τ20

�
exp

(
� 1
2σ20

n

∑
i=1
(xi � µ)2

)
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and using ∑n
i=1(xi � µ)2 = n(x̄ � µ)2 +∑n

i=1(xi � x̄)2

π(µ j x) ∝ exp
�
�1
2

�
(µ� µ0)

2

τ20
+
n(x̄ � µ)2

σ20

��
and

(µ� µ0)
2

τ20
+
n(x̄ � µ)2

σ20

=

�
1
τ20
+
n
σ20

�
µ2 � 2

�
µ0
τ20
+
nx̄
σ20

�
µ+

�
µ20
τ20
+
(nx̄)2

σ20

�
=

�
1
τ20
+
n
σ20

� 
µ�

�
1
τ20
+
n
σ20

��1 �µ0
τ20
+
nx̄
σ20

�!
+ constant

and so putting

µx = τ2x

�
µ0
τ20
+
nx̄
σ20

�
, τ2x =

�
1
τ20
+
n
σ20

��1
then µ j x � N

�
µx , τ

2
x

�
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- how to choose the hyperparameters (µ0, τ
2
0)?

- recall the data is the result of a measurement process so an observation
will fall in some known interval (l , u) with "virtual certainty" (prob. 0.99)

- so one possibility is µ0 = (l + u)/2 and choose τ0 so that
Φ((u � µ0)/τ0)�Φ((l � µ0)/τ0) = 0.99 (conservative)

- e.g. (l , u) = (3, 10) so µ0 = 6.5 and

0.99 = Φ((10� 6.5)/τ0)�Φ((3� 6.5)/τ0)

= Φ(3.5)/τ0)�Φ(�3.5)/τ0) = 2Φ(3.5)/τ0)� 1
τ0 = 3.5/Φ�1(0.995) = 1.358786

- so the N(6.5, 1.358782) expresses prior beliefs about µ

- if σ20 = 2, n = 10, x̄ = 7.3 is observed, then the posterior of µ is
N
�
µx , τ

2
x

�
= N(7.23, 0.18)
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- for a marginal parameter ψ = Ψ(θ) we have the marginal prior and
posterior

πΨ(ψ) =
Z
fθ:ψ=Ψ(θ)g

π(θ)JΨ(θ) dθ

πΨ(ψ j x) =
Z
fθ:ψ=Ψ(θ)g

π(θ j x)JΨ(θ) dθ

where JΨ(θ) is a volume distortion factor (see text Appendix)

- two properties
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(1) Consistency: the posterior for ψ is the same as if we start with the
ingredients (fm(� jψ) : ψ 2 Ψg,πΨ, x) where

m(x jψ) =
Z
fθ:ψ=Ψ(θ)g

π(θ jψ)fθ(x) dθ

π(θ jψ) =
π(θ)JΨ(θ)

πΨ(ψ)

(the "nuisance" parameters have been integrated out)
Proof:

πΨ(ψ j x) =
Z
fθ:ψ=Ψ(θ)g

π(θ j x)JΨ(θ) dθ

=
Z
fθ:ψ=Ψ(θ)g

π(θ)fθ(x)
m(x)

JΨ(θ) dθ

=
πΨ(ψ)

m(x)

Z
fθ:ψ=Ψ(θ)g

π(θ)JΨ(θ)

πΨ(ψ)
fθ(x) dθ

=
πΨ(ψ)m(x jψ)

m(x)
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(2) if after observing x , new independent data y is observed with model
fgθ : θ 2 Θ), then the posterior for ψ based on (x , y) is

πΨ(ψ j x , y) =
πΨ(ψ)m(x , y jψ)

m(x , y)
=

πΨ(ψ j x)m(x)
m(x jψ)

m(x , y jψ)
m(x , y)

=
πΨ(ψ j x)m(y jψ, x)

m(y j x)

(so the posterior for ψ based on x now serves as a prior on ψ)

- when ψ = θ

π(θ j x , y) = π(θ j x)m(y j θ, x)
m(y j x) =

π(θ j x)gθ(y)
m(y j x)
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MAP (maximum a posteriori) inferences
- the values ψ are ordered: ψ2 is preferred at least as much as ψ1
whenever πΨ(ψ1 j x) � πΨ(ψ2 j x)
- motivation from the discrete case, ψ2 is preferred at least as much as ψ1
whenever the posterior prob. of ψ2 is at least as big as the posterior prob.
of ψ1
- essentially evidence is being measured here by posterior probabilities
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E: posterior mode ψ(x) = arg supπΨ(ψ j x) with error measured by the
size of the γ-highest posterior density (hpd) region

CΨ,γ(x) = fψ : GΨ(πΨ(ψ j x) j x) � 1� γg

where GΨ(� j x) is the posterior cdf of πΨ(ψ j x) so ΠΨ(CΨ,γ(x) j x) � γ

- how to choose γ? better than γ-likelihood regions because γ is a
probability here

H: to assess H0 = fψ0g compute (Bayesian p-value)

GΨ(πΨ(ψ0 j x) j x) = ΠΨ(πΨ(ψ j x) � πΨ(ψ0 j x) j x)

and if this is small conclude evidence against (and no separate measure of
the strength of the evidence)

- how small for evidence against?
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Example location normal
- µ(x) = µx = 7.23

CΨ,0.95(x) = µ(x)� 1.96τx = [6.40, 8.06]

is the 0.95-hpd interval for µ
- assess H0 = f7g then GΨ(πΨ(7 j x) j x) > 0.05 and so no evidence
against

- in general there are two problems with MAP inferences with (2) more
serious than (1)

(1) the inferences are not invariant under reparameterizations in the
continuous case for if Ξ : Ψ 1�1,onto ,smooth! Ξ then posterior of ξ = Ξ(ψ) is

πΞ(ξ j x) = πΨ(Ξ�1(ξ) j x)JΞ(Ξ�1(ξ))

and JΞ(Ξ�1(ξ)) is not constant when Ξ is nonlinear so ξ(x) 6= Ξ(ψ(x))
in general
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Example location normal
- ξ = Ξ(µ) = µ3 so µ = ξ1/3 and JΞ(Ξ�1(ξ)) = jξj�2/3/3 so the
posterior of ξ is

πΞ(ξ j x) =
jξj�2/3

3τx
ϕ

 
ξ1/3 � µx

τx

!

which has an in�nite singularity at ξ = 0 but in any case ξ(x) 6= µ3(x)

(2) probabilities do not measure evidence
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