The Measurement of Statistical Evidence Lecture 4 - part 1

Michael Evans
University of Toronto
http://www.utstat.utoronto.ca/mikevans/sta4522/STA4522.html

2021

3. p-values and confidence

- the p-value is currently a basic tool of inference and yet serious reservations have been raised to the extent that one journal banned its use as a "measure of evidence" due to the replicability crisis
- the current approach taken by the statistical profession is to suggest that there is nothing wrong with p-values rather it is the users who do not understand how to use them correctly
- so what is a p-value?

Definition Suppose there is a hypothesis $H_{0} \subset \Theta$ concerning the true value of θ for the model $\left\{f_{\theta}: \theta \in \Theta\right\}$ and a statistic T whose probability distribution $P_{H_{0}}$ is known and fixed for each $\theta \in H_{0}$ and such that extreme values correspond to large values of T. Then H_{0} is assessed by computing the p-value $P_{H_{0}}(T \geq T(x))$ for observed value $T(x)$.

- if $P_{H_{0}}(T \geq T(x))$ is small, then it is concluded that there is evidence against H_{0}

Question 1: How small is small enough?

- a rejection trial adds the ingredient of a value $\alpha \in[0,1]$ s.t. if $P_{H_{0}}(T \geq T(x)) \leq \alpha$, then evidence against is concluded
- historically $\alpha=0.05$ has been used but a recent recommendation has been that this be replaced by $\alpha=0.005$
- will this work?

Example Cornfield (1966)
$-x=\left(x_{1}, \ldots, x_{n}\right) \stackrel{i . i . d .}{\sim} N\left(\mu, \sigma_{0}^{2}\right)$ with $\mu \in R^{1}, \sigma_{0}^{2}$ known and $H_{0}=\left\{\mu_{0}\right\}$

- then with $T_{n}(x)=\sqrt{n}\left|\bar{x}-\mu_{0}\right| / \sigma_{0} \sim|Z|$ where $Z \sim N(0,1)$ the p -value is the Z-test
$P_{H_{0}}\left(T_{n} \geq T_{n}(x)\right)=P\left(|Z| \geq \sqrt{n}\left|\bar{x}-\mu_{0}\right| / \sigma_{0}\right)=2\left(1-\Phi\left(\sqrt{n}\left|\bar{x}-\mu_{0}\right| / \sigma_{0}\right)\right)$ which ≤ 0.05 when $\sqrt{n}\left|\bar{x}-\mu_{0}\right| / \sigma_{0} \geq z_{0.975}$
- suppose an investigator collects n data values, performs the Z-test and gets a p-value of 0.06
- this is close to the 0.05 level so they decide to collect m additional data values and compute a new Z-test based on the $n+m$ values obtaining p -value <0.05 and the result is submitted for publication
- but this is a two-stage test and, when H_{0} is true, the probability of evidence against μ_{0} is

$$
\begin{aligned}
& P_{H_{0}}\left(T_{n} \geq z_{0.975}\right)+P_{H_{0}}\left(T_{m+n} \geq z_{0.975} \mid T_{n}<z_{0.975}\right) P_{H_{0}}\left(T_{n}<z_{0.975}\right) \\
= & 0.05+P_{H_{0}}\left(T_{m+n} \geq z_{0.975} \mid T_{n}<z_{0.975}\right)(0.95)>0.05
\end{aligned}
$$

and so evidence against H_{0} can never be found at the 0.05 level

- the problem here is the use of the 5% level to determine evidence against and this problem persists no matter what α level is used, yet collecting additional data in such circumstances seems like a very natural thing to do
Question 2: Why isn't a large p-value $(\geq \alpha)$ evidence in favor?
- suppose the probability measure $P_{H_{0}}$ for T is continuous with cdf $F_{H_{0}}$
- then $P_{H_{0}}(T \geq T(x))=1-F_{H_{0}}(T(x))$ so when H_{0} is true the probability distribution of the p-value is when $\theta \in H_{0}$

$$
P_{\theta}\left(1-F_{H_{0}}(T(X)) \leq u\right)=P_{H_{0}}\left(F_{H_{0}}(T) \geq 1-u\right)=u
$$

since $F_{H_{0}}(T) \sim U(0,1)$ when H_{0} is true

- so when H_{0} is true all possible values of the p-value are equally likely, independent of the amount of data while, when when H_{0} is false, the p-value typically converges to 0 as the amount of data increases

Question 3: Do p-values measure scientific significance or just statistical significance?

- suppose in the Z-test $\mu_{\text {true }}=\mu_{0}+\delta$ and δ is very small, then for n large enough $P_{H_{0}}\left(T_{n} \geq T_{n}(x)\right)<\alpha$ even when the difference δ is scientifically irrelevant
- so p-values measure statistical significance not scientific significance Boring, E. (1919) Mathematical vs statistical significance. Psychological Bulletin, 16, 10, 335-338.
- the common recommendation to deal with this issue is to compute a confidence interval for the parameter of interest but this doesn't really help unless you know the difference that matters δ and even then it is ambiguous as some values in the Cl may be relevant and some not
- the real solution is to incorporate δ into the measure of evidence, for example, put $H_{0}=\left[\mu_{0}-\delta, \mu_{0}+\delta\right]$ and assess the evidence in favor or against, but this isn't done with p -values
- basic to resolving all these issues is to use a valid measure of evidence which the p-value isn't

Definition A map $C: \mathcal{X} \rightarrow 2^{\Psi}$ is a γ-confidence region for $\psi=\Psi(\theta)$ if $P_{\theta}(\Psi(\theta) \in C(X)) \geq \gamma$ for every $\theta \in \Theta$.

- when x is observed then record $C(x)$ as "typically" the estimate is in $C(x)$ and so the "size" of $C(x)$ serves as a measure of the accuracy of the estimate
Example Absurd confidence intervals
- the model $\mathcal{X}=R^{1}, f_{\theta}(x)=(1-\theta) f(x)+\theta f(x-1)$ where f is the $N(0,1)$ density function and $\Theta=[0,1]$
- Plante(1991) a 0.95 -confidence interval for θ that is uniformly most accurate and unbiased is given by

$$
C(x)=\left\{\begin{array}{cc}
{[0,1]} & -1.68148 \leq x \leq 2.68148 \\
\phi & \text { otherwise }
\end{array}\right.
$$

Example Fieller (1954) Some problems in interval estimation. JRSSB, 16, 2, 175-185.
$-x=\left(x_{1}, \ldots, x_{m}\right) \stackrel{\text { i.i.d. }}{\sim} N\left(\mu, \sigma_{0}^{2}\right)$ ind. of $y=\left(y_{1}, \ldots, y_{n}\right) \stackrel{i . i . d .}{\sim} N\left(\nu, \sigma_{0}^{2}\right)$ and $\psi=\Psi(\mu, v)=\mu / v$ various frequentist approaches produce absurd confidence intervals (sometimes equal to R^{1})

4. Bayesian Inference

- the prior π (a proper probability distribution on Θ) is added to the ingredients, model $\left\{f_{\theta}: \theta \in \Theta\right\}$ and data x
- gives a joint prior probability distribution $(\theta, x) \sim \pi(\theta) f_{\theta}(x)$
- recall the prior π expresses our beliefs about the true value of θ
- after observing x the principle of conditional probability implies we replace π by the posterior

$$
\pi(\theta \mid x)=\frac{\pi(\theta) f_{\theta}(x)}{m(x)}
$$

where $m(x)=\int_{\Theta} \pi(\theta) f_{\theta}(x) d \theta$ is the prior predictive distribution of x

- how to choose a prior? elicitation

Example location normal
$-x=\left(x_{1}, \ldots, x_{n}\right) \stackrel{i . i . d .}{\sim} N\left(\mu, \sigma_{0}^{2}\right)$ with $\mu \in R^{1}, \sigma_{0}^{2}$ known and π a $N\left(\mu_{0}, \tau_{0}^{2}\right)$ dist. so

$$
\pi(\mu \mid x) \propto \pi(\mu) f_{\mu}(x) \propto \exp \left\{-\frac{\left(\mu-\mu_{0}\right)^{2}}{2 \tau_{0}^{2}}\right\} \exp \left\{-\frac{1}{2 \sigma_{0}^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}\right\}
$$

and using $\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}=n(\bar{x}-\mu)^{2}+\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$

$$
\pi(\mu \mid x) \propto \exp \left\{-\frac{1}{2}\left[\frac{\left(\mu-\mu_{0}\right)^{2}}{\tau_{0}^{2}}+\frac{n(\bar{x}-\mu)^{2}}{\sigma_{0}^{2}}\right]\right\}
$$

and

$$
\begin{aligned}
& \frac{\left(\mu-\mu_{0}\right)^{2}}{\tau_{0}^{2}}+\frac{n(\bar{x}-\mu)^{2}}{\sigma_{0}^{2}} \\
= & \left(\frac{1}{\tau_{0}^{2}}+\frac{n}{\sigma_{0}^{2}}\right) \mu^{2}-2\left(\frac{\mu_{0}}{\tau_{0}^{2}}+\frac{n \bar{x}}{\sigma_{0}^{2}}\right) \mu+\left(\frac{\mu_{0}^{2}}{\tau_{0}^{2}}+\frac{(n \bar{x})^{2}}{\sigma_{0}^{2}}\right) \\
= & \left(\frac{1}{\tau_{0}^{2}}+\frac{n}{\sigma_{0}^{2}}\right)\left(\mu-\left(\frac{1}{\tau_{0}^{2}}+\frac{n}{\sigma_{0}^{2}}\right)^{-1}\left(\frac{\mu_{0}}{\tau_{0}^{2}}+\frac{n \bar{x}}{\sigma_{0}^{2}}\right)\right)+\mathrm{constant}
\end{aligned}
$$

and so putting

$$
\mu_{x}=\tau_{x}^{2}\left(\frac{\mu_{0}}{\tau_{0}^{2}}+\frac{n \bar{x}}{\sigma_{0}^{2}}\right), \tau_{x}^{2}=\left(\frac{1}{\tau_{0}^{2}}+\frac{n}{\sigma_{0}^{2}}\right)^{-1}
$$

then $\mu \mid x \sim N\left(\mu_{x}, \tau_{x}^{2}\right)$

- how to choose the hyperparameters $\left(\mu_{0}, \tau_{0}^{2}\right)$?
- recall the data is the result of a measurement process so an observation will fall in some known interval (I, u) with "virtual certainty" (prob. 0.99)
- so one possibility is $\mu_{0}=(I+u) / 2$ and choose τ_{0} so that $\Phi\left(\left(u-\mu_{0}\right) / \tau_{0}\right)-\Phi\left(\left(I-\mu_{0}\right) / \tau_{0}\right)=0.99$ (conservative)
- e.g. $(I, u)=(3,10)$ so $\mu_{0}=6.5$ and

$$
\begin{aligned}
0.99 & =\Phi\left((10-6.5) / \tau_{0}\right)-\Phi\left((3-6.5) / \tau_{0}\right) \\
& \left.\left.\left.=\Phi(3.5) / \tau_{0}\right)-\Phi(-3.5) / \tau_{0}\right)=2 \Phi(3.5) / \tau_{0}\right)-1 \\
\tau_{0} & =3.5 / \Phi^{-1}(0.995)=1.358786
\end{aligned}
$$

- so the $N\left(6.5,1.35878^{2}\right)$ expresses prior beliefs about μ
- if $\sigma_{0}^{2}=2, n=10, \bar{x}=7.3$ is observed, then the posterior of μ is $N\left(\mu_{x}, \tau_{x}^{2}\right)=N(7.23,0.18)$
- for a marginal parameter $\psi=\Psi(\theta)$ we have the marginal prior and posterior

$$
\begin{aligned}
\pi_{\Psi}(\psi) & =\int_{\{\theta: \psi=\Psi(\theta)\}} \pi(\theta) J_{\Psi}(\theta) d \theta \\
\pi_{\Psi}(\psi \mid x) & =\int_{\{\theta: \psi=\Psi(\theta)\}} \pi(\theta \mid x) J_{\Psi}(\theta) d \theta
\end{aligned}
$$

where $J_{\Psi}(\theta)$ is a volume distortion factor (see text Appendix)

- two properties
(1) Consistency: the posterior for ψ is the same as if we start with the ingredients $\left(\{m(\cdot \mid \psi): \psi \in \Psi\}, \pi_{\Psi}, x\right)$ where

$$
\begin{aligned}
m(x \mid \psi) & =\int_{\{\theta: \psi=\Psi(\theta)\}} \pi(\theta \mid \psi) f_{\theta}(x) d \theta \\
\pi(\theta \mid \psi) & =\frac{\pi(\theta) J_{\Psi}(\theta)}{\pi_{\Psi}(\psi)}
\end{aligned}
$$

(the "nuisance" parameters have been integrated out)
Proof:

$$
\begin{aligned}
\pi_{\Psi}(\psi \mid x) & =\int_{\{\theta: \psi=\Psi(\theta)\}} \pi(\theta \mid x) J_{\Psi}(\theta) d \theta \\
& =\int_{\{\theta: \psi=\Psi(\theta)\}} \frac{\pi(\theta) f_{\theta}(x)}{m(x)} J_{\Psi}(\theta) d \theta \\
& =\frac{\pi_{\Psi}(\psi)}{m(x)} \int_{\{\theta: \psi=\Psi(\theta)\}} \frac{\pi(\theta) J_{\Psi}(\theta)}{\pi_{\Psi}(\psi)} f_{\theta}(x) d \theta \\
& =\frac{\pi_{\Psi}(\psi) m(x \mid \psi)}{m(x)}
\end{aligned}
$$

(2) if after observing x, new independent data y is observed with model $\left\{g_{\theta}: \theta \in \Theta\right)$, then the posterior for ψ based on (x, y) is

$$
\begin{aligned}
\pi_{\Psi}(\psi \mid x, y) & =\frac{\pi_{\Psi}(\psi) m(x, y \mid \psi)}{m(x, y)}=\frac{\pi_{\Psi}(\psi \mid x) m(x)}{m(x \mid \psi)} \frac{m(x, y \mid \psi)}{m(x, y)} \\
& =\frac{\pi_{\Psi}(\psi \mid x) m(y \mid \psi, x)}{m(y \mid x)}
\end{aligned}
$$

(so the posterior for ψ based on x now serves as a prior on ψ)

- when $\psi=\theta$

$$
\pi(\theta \mid x, y)=\frac{\pi(\theta \mid x) m(y \mid \theta, x)}{m(y \mid x)}=\frac{\pi(\theta \mid x) g_{\theta}(y)}{m(y \mid x)}
$$

MAP (maximum a posteriori) inferences

- the values ψ are ordered: ψ_{2} is preferred at least as much as ψ_{1} whenever $\pi_{\Psi}\left(\psi_{1} \mid x\right) \leq \pi_{\Psi}\left(\psi_{2} \mid x\right)$
- motivation from the discrete case, ψ_{2} is preferred at least as much as ψ_{1} whenever the posterior prob. of ψ_{2} is at least as big as the posterior prob. of ψ_{1}
- essentially evidence is being measured here by posterior probabilities

E: posterior mode $\psi(x)=\arg \sup \pi_{\Psi}(\psi \mid x)$ with error measured by the size of the γ-highest posterior density (hpd) region

$$
C_{\Psi, \gamma}(x)=\left\{\psi: G_{\Psi}\left(\pi_{\Psi}(\psi \mid x) \mid x\right) \geq 1-\gamma\right\}
$$

where $G_{\Psi}(\cdot \mid x)$ is the posterior cdf of $\pi_{\Psi}(\psi \mid x)$ so $\Pi_{\Psi}\left(C_{\Psi, \gamma}(x) \mid x\right) \geq \gamma$

- how to choose γ ? better than γ-likelihood regions because γ is a probability here
H: to assess $H_{0}=\left\{\psi_{0}\right\}$ compute (Bayesian p-value)

$$
G_{\Psi}\left(\pi_{\Psi}\left(\psi_{0} \mid x\right) \mid x\right)=\Pi_{\Psi}\left(\pi_{\Psi}(\psi \mid x) \leq \pi_{\Psi}\left(\psi_{0} \mid x\right) \mid x\right)
$$

and if this is small conclude evidence against (and no separate measure of the strength of the evidence)

- how small for evidence against?

Example location normal

- $\mu(x)=\mu_{x}=7.23$

$$
C_{\Psi, 0.95}(x)=\mu(x) \pm 1.96 \tau_{x}=[6.40,8.06]
$$

is the 0.95 -hpd interval for μ

- assess $H_{0}=\{7\}$ then $G_{\Psi}\left(\pi_{\Psi}(7 \mid x) \mid x\right)>0.05$ and so no evidence against
- in general there are two problems with MAP inferences with (2) more serious than (1)
(1) the inferences are not invariant under reparameterizations in the continuous case for if $\Xi: \Psi \xrightarrow{1-1, \text { onto, smooth }} \Xi$ then posterior of $\xi=\Xi(\psi)$ is

$$
\pi_{\Xi}(\xi \mid x)=\pi_{\Psi}\left(\Xi^{-1}(\xi) \mid x\right) J_{\Xi}\left(\Xi^{-1}(\xi)\right)
$$

and $J_{\Xi}\left(\Xi^{-1}(\xi)\right)$ is not constant when Ξ is nonlinear so $\xi(x) \neq \Xi(\psi(x))$ in general

Example location normal

- $\xi=\Xi(\mu)=\mu^{3}$ so $\mu=\xi^{1 / 3}$ and $J_{\Xi}\left(\Xi^{-1}(\xi)\right)=|\xi|^{-2 / 3} / 3$ so the posterior of ξ is

$$
\pi_{\Xi}(\xi \mid x)=\frac{|\xi|^{-2 / 3}}{3 \tau_{x}} \varphi\left(\frac{\xi^{1 / 3}-\mu_{x}}{\tau_{x}}\right)
$$

which has an infinite singularity at $\xi=0$ but in any case $\xi(x) \neq \mu^{3}(x)$
(2) probabilities do not measure evidence

